The full list of publications (including proceedings papers and most recent preprints) can be found on my Google Scholar page.
PUBLICATIONS IN INTERNATIONAL JOURNALS
[J48] N. R. Scheichl, "Overlapping Schwarz Methods with GenEO coarse spaces for indefinite and nonself-adjoint problems", IMA Journal of Numerical Analysis, 2022. DOI: 10.1093/imanum/drac036
[J47] N. Bootland, V. Dolean, "Can DtN and GenEO Coarse Spaces Be Sufficiently Robust for Heterogeneous Helmholtz Problems?", Math. Comput. Appl. vol 27(3), 2022. DOI: 10.339/mca227030035
[J46] B. Robinson, J. D Edwards, T. Kendzerska, C. Pettit, D. Poirel., J. M Daly, M. Ammi, M. Khalil, Peter J Taillon, R. Sandhu, S. Mills, S. Mulpuru, T. Walker, V. Percival, V. Dolean, A. Sarkar, "Comprehensive compartmental model and calibration algorithm for the study of clinical implications of the population- level spread of COVID-19: a study protocol". BMJ Open 2022. DOI: 10.1136/ bmjopen-2021-052681
[J45] P.-H. Tournier, P. Jolivet, V. Dolean, H. S Aghamiry, S. Operto, S. Riffo, "Three-dimensional finite-difference finite-element frequency-domain wave simulation with multi-level optimized additive Schwarz domain-decomposition preconditioner: A tool for FWI of sparse node datasets", vol 84(5), pp 1-84, Geophysics, 2022. DOI: 10.1190/geo2021-0702.1
[J44] N. Bootland, V. Dolean, A. Kyriakis, J. Pestana, "Analysis of parallel Schwarz algorithms for time-harmonic problems using block Toeplitz matrices", Vol 55, pp. 112-141, ETNA (Electronic Transactions in Numerical Analysis), 2021. DOI: 10.1553/etna_vol55s112
[J43] N. Bootland, V. Dolean, P. Jolivet, P.-H. Tournier, "A comparison of coarse spaces for Helmholtz problems in the high frequency regime", Vol 98, pp. 239-253, Comp. Math Appl., 2021. DOI: 10.1016/j.camwa.2021.07.011
[J42] R. Brunet, V. Dolean, M. J. Gander, "Natural domain decomposition algorithms for time-harmonic elastic waves", SIAM J. Sci. Comput., 42(5), pp A3313-3339 2020. DOI: 10.1137/19M125858X
[J41] P.-H.Tournier, I. Aliferis, M. Bonazzoli, M. de Buhan, M. Darbas, V.Dolean, F. Hecht, P. Jolivet, I.El Kanfoud, C. Migliaccio, F. Nataf, Ch.Pichot, S. Semenov, ”Microwave tomographic imaging of cerebrovascular accidents by using high-performance computing”, Volume 85, Pages 88-97, Parallel Computing, 2019. DOI: 10.1016/j.parco.2019.02.004
[J40] M. Bonazzoli, V. Dolean, I.G. Graham, E. Spence, P.-H. Tournier, ”Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations with absorption”, Mathematics of Computation, 2019. DOI: 10.1090/mcom/3447
[J39] X Claeys, V Dolean, M. J. Gander, ”An introduction to multi-trace formulations and associated domain decomposition solvers”, Volume 135, January 2019, Pages 69-86, Applied Numerical Mathematics, 2019. DOI: 10.1016/j.apnum.2018.07.006
[J38] Vanna Lisa Coli, Pierre-Henri Tournier, Victorita Dolean, Ibtissam El Kanfoud, Christian Pichot, Claire Migliaccio, Laure Blanc-Feraud, “Detection of Brain Strokes Using Microwave Tomography”, IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology, 2019.
[J37] V. Dolean, M.J. Gander, E. Veneros, ”Asymptotic Analysis of Optimized Schwarz Methods for Maxwell’s Equations with Discontinuous Coefficients”, ESAIM-Mathematical Modelling and Numerical Analysis, Vol 52(6), pp. 2457-2477, 2018. DOI: 10.1051/m2an/2018041
[J36] G. R. Barrenechea, M. Bosy, V. Dolean, F. Nataf, P.-H. Tournier, ”Hybrid discontinuous Galerkin discretization and preconditioning for the Stokes problem with non-standard boundary conditions”, Comp Meth Appl Math, 2018.
[J35] G. R. Barrenechea, M. Bosy, V. Dolean, “Numerical assessment of two-level domain decomposition preconditioners for incompressible Stokes and elasticity equations”, Vol 49, pp. 41-63, ETNA (Electronic Transactions in Numerical Analysis), 2018. DOI: 10.1553/etna_vol49s41
[J34] M.Bonazzoli, V. Dolean, F.Hecht, F.Rapetti, “An example of explicit implementation strategy and preconditioning for the high order edge finite elements applied to the time-harmonic Maxwell’s equations”, Vol 75 (5), pp. 1498-1514, Comp. Math Appl., 2018. DOI: 10.1016/j.camwa.2017.11.013
[J33] P.-H. Tournier, M. Bonazzoli, V. Dolean, F. Rapetti, F. Hecht, F. Nataf, I. Aliferis, I. El Kanfoud, C. Migliaccio, M. de Buhan, M. Darbas, S. Semenov, C. Pichot, ”Numerical modelling and high speed parallel computing: new perspectives for brain strokes detection and monitoring”, IEEE Antennas and Propagation Magazine, Special issue on ”Electromagnetic Inverse Problems for Sensing and Imaging, Vol 59(5), pp 98-110, 2017.
[J32] M. Bonazzoli, V. Dolean, F. Rapetti, P.-H. Tournier, “Parallel preconditioners for high order discretizations arising from full system modelling from brain microwave imaging”, International Journal of Numerical Modelling: Electronic Networks Devices and Fields, 2017. DOI: 10.1002/jnm.2229
[J31] V. Dolean, M. J. Gander, W. Kheriji, F. Kwok, R. Masson, ”Nonlinear Preconditioning: How to Use a Nonlinear Schwarz Method to Precondition Newton’s Method”, SIAM J. Sci. Comput., 38(6), A3357- A3380, 2016. DOI: 10.1137/15M102887X
[J30] L. Conen, V. Dolean, R. Krause, F. Nataf, Addendum to “A coarse space for heterogeneous Helmholtz problems based on the Dirichlet to Neumann operator”, Journal of Computational and Applied Mathematics, vol 290, 670-674, 2015. DOI: 10.1016/j.cam.2015.04.031
[J29] M. El Bouajaji, V. Dolean, M. J. Gander, S. Lanteri, R. Perrussel, “Discontinuous Galerkin discretizations of optimized Schwarz methods for solving the time-harmonic Maxwell’s equations”, ETNA (Electronic Transactions in Numerical Analysis), vol 44, pp 572-592, 2015.
[J28] V. Dolean, M. Gander, S. Lanteri, J.-F. Lee, Z. Peng, “Effective Transmission Conditions for Domain Decomposition Methods applied to the Time-Harmonic Curl-Curl Maxwell’s equations”, Journal of Computational Physics, Volume 280, pp 232-247, 2015. DOI: 10.1016/j.jcp.2014.09.024
[J27] L. Conen, V. Dolean, R. Krause, F. Nataf, “A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator”, Journal of Computational and Applied Mathematics, vol 271, 83-99, 2014.
[J26] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, R. Scheichl, “Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps”, Numerische Mathematik, Vol. 126, Issue 4, pp 741-770, 2014. DOI:
[J25] N. Spillane, V. Dolean, P. Jolivet, F. Nataf, H. Xiang, “Two-level domain decomposition methods for highly heterogeneous Darcy equations. Connections with multiscale methods”, Oil and Gas Science and Technology, Volume 69(4), pp. 731-752, 2014. DOI: 10.2516/ogst/2013206
[J24] N. Spillane, V. Dolean, P. Hauret, F. Nataf, D.J. Rixen, “Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method”, C. R. Math. Acad. Sci. Paris, Vol 351, no. 5-6, pp. 197-201, 2013. DOI: 10.1016/j.crma.2013.03.010
[J23] P. Jolivet, V. Dolean, F. Hecht, F. Nataf, C. Prud’homme, N. Spillane, ”High performance domain decomposition methods on massively parallel architectures with FreeFEM++”, J. Numer. Math., Vol. 20, no. 3-4, pp. 287-302, 2012. DOI: 10.1515/jnum-2012-0015
[J22] V. Dolean, F. Nataf, R. Scheichl, N. Spillane, “Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet–to–Neumann maps”, Comp. Meth. Appl. Math., Vol 12. No. 4, 2012. DOI: 10.2478/cmam-2012-0027
[J21] V. Dolean, M. El Bouajaji, M. J. Gander, S. Lanteri, “Optimized Schwarz methods for the time-harmonic Maxwell equations with damping”, SIAM J. Sci. Comp., Vol. 34, No. 4, pp. 2048-2071, 2012. DOI: 10.1137/110842995
[J20] N.Spillane, V. Dolean, P.Hauret, F.Nataf, C.Pechstein, R.Scheichl, ”A robust two-level domain decomposition preconditioner for systems of PDEs}”, C. R. Mathematique, Vol 349(23-24), pp.1255-1259, 2011. DOI: 10.1016/j.crma.2011.10.021
[J19] F. Nataf, H. Xiang, V. Dolean, N. Spillane, “A coarse space construction based on local Dirichlet to Neumann maps”, SIAM J. Sci Comput., Vol. 33, No.4, pp. 1623-1642, 2011. DOI: 10.1137/100796376
[J18] F. Nataf, H. Xiang, V. Dolean, “A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps”, C. R. Mathematique, Vol. 348(21-22), pp. 1163-1167, 2010. DOI: 10.1016/j.crma.2010.10.007
[J17] V. Dolean, H. Fahs, S. Lanteri, F. Rapetti, “Recent achievements on a DGTD method for time-domain electromagnetics”, IEEE Trans. on Magn., Vol. 46(8), pp. 3061-3064, 2010.
[J16] V. Dolean, H. Fahs, L. Fezoui, S. Lanteri, “Locally implicit discontinuous Galerkin method for time domain electromagnetics”, Journal of Computational Physics, Vol. 229(2), pp. 512-526, 2010. DOI: 10.1016/j.jcp.2009.09.038
[J15] A. Catella, V. Dolean, S. Lanteri, “An implicit discontinuous Galerkin time-domain method for two- dimensional electromagnetic wave propagation”, COMPEL, Vol. 29(3) 2010. DOI: 10.1108/03321641011028215
[J14] V. Dolean, L. Gerardo-Giorda, M. J. Gander, “Optimized Schwarz methods for Maxwell equations”, SIAM J. Sci. Comput., vol 31(3), pp. 2193-2213, 2009. DOI: 10.1137/080728536
[J13] V. Dolean, G.Rapin, F.Nataf, ”Deriving a new domain decomposition method for the Stokes equations using Smith factorization”, Mathematics of Computation, vol 78, pp. 789-814, 2009. DOI: 10.1090/S0025-5718-08-02172-8
[J12] V. Dolean, S. Lanteri, R. Perrussel, “Optimized Schwarz method for solving time-harmonic Maxwell equations discretized by discontinuous Galerkin methods”, IEEE Trans. on Magn., vol 44(6), 2008.
[J11] A. Catella, V. Dolean, S. Lanteri, “An inconditionnally stable discontinuous Galerkin method for solving 2D time-domain Maxwell equations on unstructured triangular meshes”, IEEE Trans. on Magn., vol 44(6), 2008.
[J10] V. Dolean, S. Lanteri, R. Perrussel, “A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods”, Journal of Computational Physics, vol. 227(3), pp. 2044-2072, 2008.
[J9] V. Dolean, H. Fol, S. Lanteri, R. Perrussel, “Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods”, Journal of Computational and Applied Mathematics, vol. 218(2), pp. 435-445, 2008.
[J8] V. Dolean, F. Nataf, “A new domain decomposition method for the compressible Euler equations”, ESAIM-M2AN (Modelisation Mathematique et Analyse Numerique), vol. 40, No. 4, pp. 689-703, 2006.
[J7] V. Dolean, G. Rapin, F. Nataf, “New constructions of domain decomposition methods for systems of PDEs”, C.R. Acad. Sci. Paris, Ser. I 340, pp. 693-696, 2005.
[J6] V. Dolean, S. Lanteri, ”Parallel multigrid methods for the calculation of unsteady flows on unstructured grids: algorithmic aspects and parallel performances on clusters of PCs”, Parallel Computing, vol 30, pp. 503-525, 2004.
[J5] V. Dolean, S. Lanteri, F. Nataf, “Convergence analysis of a Schwarz type domain decomposition method for the solution of the Euler equations”, Appl. Num. Math., vol 49, pp. 153-186, 2004.
[J4] V. Dolean, S. Lanteri, F. Nataf, “Construction of interface conditions for solving the compressible Euler equations by non-overlapping domain decomposition methods”, Int. J. Num. Meth. Fluids, vol 40, pp. 1485-1492, 2002.
[J3] V. Dolean, S. Lanteri, F. Nataf, “Optimized interface conditions for domain decomposition methods in fluid dynamics”, Int. J. Numer. Meth. Fluids, vol 40, pp. 1539-1550, 2002.
[J2] V. Dolean, S. Lanteri, “A domain decomposition approach to finite volume solution of the Euler equations on unstructured triangular meshes”, Int. J. Numer. Meth. Fluids, vol 37-6, pp. 625-656, 2001.
[J1] V. Dolean, S. Lanteri, “A hybrid domain decomposition and multigrid method for the acceleration of compressible viscous flow calculations on unstructured triangular meshes”, Int. J. Comp. Fluid Dyn., vol 14, pp. 287-304, 2001.